In this article, you will learn-
B+ Tree Deletion
In this tutorial, you will learn about the deletion operation on a B+ tree. Likewise, you will discover working instances of deleting elements from a B+ tree in C, C++, Java, and Python.
What is a B+ Tree?
A B+ Tree is primarily used for executing dynamic indexing on numerous levels. Compared with B-Tree, the B+ Tree stores the data pointers just at the leaf nodes of the Tree, which makes the search more interaction more exact and quicker.
Deleting an element on a B+ tree comprises three main events: searching the node where the way to be erased exists, erasing the key, and balancing the tree if required. Underflow is a circumstance when there is fewer number keys in a node than the base number of keys it should hold.
Deletetion Operation
Before experiencing the steps beneath, one should know these realities about a B+ tree of degree m.
- A node can have a maximum of m children. (for example 3)
- A node can contain a maximum of m – 1 keys. (for example 2)
- A node ought to have at least ⌈m/2⌉ children. (for example 2)
- A node (except root node) ought to contain at least ⌈m/2⌉ – 1 keys. (for example 1)
While erasing a key, we need to deal with the keys present in the inward nodes (for example indexes) also on the grounds that the values are redundant in a B+ tree. Search the way to be erased then follow the accompanying steps.
Case I
The key to be erased is available just at the leaf node not in the indexes (or inner nodes). There are two cases for it:
- There is more than the minimum number of keys in the node. Essentially erase the key.
2. There is an exact minimum number of keys in the node. Erase the key and borrow a key from the intermediate sibling. Add the middle key of the sibling node to the parent.
Case II
The key to be erased is available in the inside nodes too. At that point, we need to eliminate them from the inside nodes also. There are the accompanying cases for the present circumstance.
- On the off chance that there is more than the minimum number of keys in the node, essentially erase the key from the leaf node and erase the key from the interior node also.
Fill the unfilled space in the inward node with the inorder successor.
2. On the off chance that there is a definite least number of keys in the node, erase the key and borrow a key from its immediate sibling (through the parent).
Fill the vacant space created in the index (interior node) with the borrowed key.
3. This case is like Case II(1) however here, empty space is produced above the quick parent node.
Subsequent to erasing the key, combine the vacant space with its sibling.
Fill the unfilled space in the grandparent node with the inorder successor.
Case III
For this situation, the height of the tree gets shrinked. It is a touch of complicated.Deleting 55 from the tree beneath leads to this condition. It very well may be perceived in the illustrations beneath.
Python, Java, and C/C++ Examples
Python
# B+ tree in python import math # Node creation class Node: def __init__(self, order): self.order = order self.values = [] self.keys = [] self.nextKey = None self.parent = None self.check_leaf = False # Insert at the leaf def insert_at_leaf(self, leaf, value, key): if (self.values): temp1 = self.values for i in range(len(temp1)): if (value == temp1[i]): self.keys[i].append(key) break elif (value < temp1[i]): self.values = self.values[:i] + [value] + self.values[i:] self.keys = self.keys[:i] + [[key]] + self.keys[i:] break elif (i + 1 == len(temp1)): self.values.append(value) self.keys.append([key]) break else: self.values = [value] self.keys = [[key]] # B plus tree class BplusTree: def __init__(self, order): self.root = Node(order) self.root.check_leaf = True # Insert operation def insert(self, value, key): value = str(value) old_node = self.search(value) old_node.insert_at_leaf(old_node, value, key) if (len(old_node.values) == old_node.order): node1 = Node(old_node.order) node1.check_leaf = True node1.parent = old_node.parent mid = int(math.ceil(old_node.order / 2)) - 1 node1.values = old_node.values[mid + 1:] node1.keys = old_node.keys[mid + 1:] node1.nextKey = old_node.nextKey old_node.values = old_node.values[:mid + 1] old_node.keys = old_node.keys[:mid + 1] old_node.nextKey = node1 self.insert_in_parent(old_node, node1.values[0], node1) # Search operation for different operations def search(self, value): current_node = self.root while(current_node.check_leaf == False): temp2 = current_node.values for i in range(len(temp2)): if (value == temp2[i]): current_node = current_node.keys[i + 1] break elif (value < temp2[i]): current_node = current_node.keys[i] break elif (i + 1 == len(current_node.values)): current_node = current_node.keys[i + 1] break return current_node # Find the node def find(self, value, key): l = self.search(value) for i, item in enumerate(l.values): if item == value: if key in l.keys[i]: return True else: return False return False # Inserting at the parent def insert_in_parent(self, n, value, ndash): if (self.root == n): rootNode = Node(n.order) rootNode.values = [value] rootNode.keys = [n, ndash] self.root = rootNode n.parent = rootNode ndash.parent = rootNode return parentNode = n.parent temp3 = parentNode.keys for i in range(len(temp3)): if (temp3[i] == n): parentNode.values = parentNode.values[:i] + \ [value] + parentNode.values[i:] parentNode.keys = parentNode.keys[:i + 1] + [ndash] + parentNode.keys[i + 1:] if (len(parentNode.keys) > parentNode.order): parentdash = Node(parentNode.order) parentdash.parent = parentNode.parent mid = int(math.ceil(parentNode.order / 2)) - 1 parentdash.values = parentNode.values[mid + 1:] parentdash.keys = parentNode.keys[mid + 1:] value_ = parentNode.values[mid] if (mid == 0): parentNode.values = parentNode.values[:mid + 1] else: parentNode.values = parentNode.values[:mid] parentNode.keys = parentNode.keys[:mid + 1] for j in parentNode.keys: j.parent = parentNode for j in parentdash.keys: j.parent = parentdash self.insert_in_parent(parentNode, value_, parentdash) # Delete a node def delete(self, value, key): node_ = self.search(value) temp = 0 for i, item in enumerate(node_.values): if item == value: temp = 1 if key in node_.keys[i]: if len(node_.keys[i]) > 1: node_.keys[i].pop(node_.keys[i].index(key)) elif node_ == self.root: node_.values.pop(i) node_.keys.pop(i) else: node_.keys[i].pop(node_.keys[i].index(key)) del node_.keys[i] node_.values.pop(node_.values.index(value)) self.deleteEntry(node_, value, key) else: print("Value not in Key") return if temp == 0: print("Value not in Tree") return # Delete an entry def deleteEntry(self, node_, value, key): if not node_.check_leaf: for i, item in enumerate(node_.keys): if item == key: node_.keys.pop(i) break for i, item in enumerate(node_.values): if item == value: node_.values.pop(i) break if self.root == node_ and len(node_.keys) == 1: self.root = node_.keys[0] node_.keys[0].parent = None del node_ return elif (len(node_.keys) < int(math.ceil(node_.order / 2)) and node_.check_leaf == False) or (len(node_.values) < int(math.ceil((node_.order - 1) / 2)) and node_.check_leaf == True): is_predecessor = 0 parentNode = node_.parent PrevNode = -1 NextNode = -1 PrevK = -1 PostK = -1 for i, item in enumerate(parentNode.keys): if item == node_: if i > 0: PrevNode = parentNode.keys[i - 1] PrevK = parentNode.values[i - 1] if i < len(parentNode.keys) - 1: NextNode = parentNode.keys[i + 1] PostK = parentNode.values[i] if PrevNode == -1: ndash = NextNode value_ = PostK elif NextNode == -1: is_predecessor = 1 ndash = PrevNode value_ = PrevK else: if len(node_.values) + len(NextNode.values) < node_.order: ndash = NextNode value_ = PostK else: is_predecessor = 1 ndash = PrevNode value_ = PrevK if len(node_.values) + len(ndash.values) < node_.order: if is_predecessor == 0: node_, ndash = ndash, node_ ndash.keys += node_.keys if not node_.check_leaf: ndash.values.append(value_) else: ndash.nextKey = node_.nextKey ndash.values += node_.values if not ndash.check_leaf: for j in ndash.keys: j.parent = ndash self.deleteEntry(node_.parent, value_, node_) del node_ else: if is_predecessor == 1: if not node_.check_leaf: ndashpm = ndash.keys.pop(-1) ndashkm_1 = ndash.values.pop(-1) node_.keys = [ndashpm] + node_.keys node_.values = [value_] + node_.values parentNode = node_.parent for i, item in enumerate(parentNode.values): if item == value_: p.values[i] = ndashkm_1 break else: ndashpm = ndash.keys.pop(-1) ndashkm = ndash.values.pop(-1) node_.keys = [ndashpm] + node_.keys node_.values = [ndashkm] + node_.values parentNode = node_.parent for i, item in enumerate(p.values): if item == value_: parentNode.values[i] = ndashkm break else: if not node_.check_leaf: ndashp0 = ndash.keys.pop(0) ndashk0 = ndash.values.pop(0) node_.keys = node_.keys + [ndashp0] node_.values = node_.values + [value_] parentNode = node_.parent for i, item in enumerate(parentNode.values): if item == value_: parentNode.values[i] = ndashk0 break else: ndashp0 = ndash.keys.pop(0) ndashk0 = ndash.values.pop(0) node_.keys = node_.keys + [ndashp0] node_.values = node_.values + [ndashk0] parentNode = node_.parent for i, item in enumerate(parentNode.values): if item == value_: parentNode.values[i] = ndash.values[0] break if not ndash.check_leaf: for j in ndash.keys: j.parent = ndash if not node_.check_leaf: for j in node_.keys: j.parent = node_ if not parentNode.check_leaf: for j in parentNode.keys: j.parent = parentNode # Print the tree def printTree(tree): lst = [tree.root] level = [0] leaf = None flag = 0 lev_leaf = 0 node1 = Node(str(level[0]) + str(tree.root.values)) while (len(lst) != 0): x = lst.pop(0) lev = level.pop(0) if (x.check_leaf == False): for i, item in enumerate(x.keys): print(item.values) else: for i, item in enumerate(x.keys): print(item.values) if (flag == 0): lev_leaf = lev leaf = x flag = 1 record_len = 3 bplustree = BplusTree(record_len) bplustree.insert('5', '33') bplustree.insert('15', '21') bplustree.insert('25', '31') bplustree.insert('35', '41') bplustree.insert('45', '10') printTree(bplustree) if(bplustree.find('5', '34')): print("Found") else: print("Not found")
Java
// Searching on a B+ tree in Java import java.util.*; public class BPlusTree { int m; InternalNode root; LeafNode firstLeaf; // Binary search program private int binarySearch(DictionaryPair[] dps, int numPairs, int t) { Comparator<DictionaryPair> c = new Comparator<DictionaryPair>() { @Override public int compare(DictionaryPair o1, DictionaryPair o2) { Integer a = Integer.valueOf(o1.key); Integer b = Integer.valueOf(o2.key); return a.compareTo(b); } }; return Arrays.binarySearch(dps, 0, numPairs, new DictionaryPair(t, 0), c); } // Find the leaf node private LeafNode findLeafNode(int key) { Integer[] keys = this.root.keys; int i; for (i = 0; i < this.root.degree - 1; i++) { if (key < keys[i]) { break; } } Node child = this.root.childPointers[i]; if (child instanceof LeafNode) { return (LeafNode) child; } else { return findLeafNode((InternalNode) child, key); } } // Find the leaf node private LeafNode findLeafNode(InternalNode node, int key) { Integer[] keys = node.keys; int i; for (i = 0; i < node.degree - 1; i++) { if (key < keys[i]) { break; } } Node childNode = node.childPointers[i]; if (childNode instanceof LeafNode) { return (LeafNode) childNode; } else { return findLeafNode((InternalNode) node.childPointers[i], key); } } // Finding the index of the pointer private int findIndexOfPointer(Node[] pointers, LeafNode node) { int i; for (i = 0; i < pointers.length; i++) { if (pointers[i] == node) { break; } } return i; } // Get the mid point private int getMidpoint() { return (int) Math.ceil((this.m + 1) / 2.0) - 1; } // Balance the tree private void handleDeficiency(InternalNode in) { InternalNode sibling; InternalNode parent = in.parent; if (this.root == in) { for (int i = 0; i < in.childPointers.length; i++) { if (in.childPointers[i] != null) { if (in.childPointers[i] instanceof InternalNode) { this.root = (InternalNode) in.childPointers[i]; this.root.parent = null; } else if (in.childPointers[i] instanceof LeafNode) { this.root = null; } } } } else if (in.leftSibling != null && in.leftSibling.isLendable()) { sibling = in.leftSibling; } else if (in.rightSibling != null && in.rightSibling.isLendable()) { sibling = in.rightSibling; int borrowedKey = sibling.keys[0]; Node pointer = sibling.childPointers[0]; in.keys[in.degree - 1] = parent.keys[0]; in.childPointers[in.degree] = pointer; parent.keys[0] = borrowedKey; sibling.removePointer(0); Arrays.sort(sibling.keys); sibling.removePointer(0); shiftDown(in.childPointers, 1); } else if (in.leftSibling != null && in.leftSibling.isMergeable()) { } else if (in.rightSibling != null && in.rightSibling.isMergeable()) { sibling = in.rightSibling; sibling.keys[sibling.degree - 1] = parent.keys[parent.degree - 2]; Arrays.sort(sibling.keys, 0, sibling.degree); parent.keys[parent.degree - 2] = null; for (int i = 0; i < in.childPointers.length; i++) { if (in.childPointers[i] != null) { sibling.prependChildPointer(in.childPointers[i]); in.childPointers[i].parent = sibling; in.removePointer(i); } } parent.removePointer(in); sibling.leftSibling = in.leftSibling; } if (parent != null && parent.isDeficient()) { handleDeficiency(parent); } } private boolean isEmpty() { return firstLeaf == null; } private int linearNullSearch(DictionaryPair[] dps) { for (int i = 0; i < dps.length; i++) { if (dps[i] == null) { return i; } } return -1; } private int linearNullSearch(Node[] pointers) { for (int i = 0; i < pointers.length; i++) { if (pointers[i] == null) { return i; } } return -1; } private void shiftDown(Node[] pointers, int amount) { Node[] newPointers = new Node[this.m + 1]; for (int i = amount; i < pointers.length; i++) { newPointers[i - amount] = pointers[i]; } pointers = newPointers; } private void sortDictionary(DictionaryPair[] dictionary) { Arrays.sort(dictionary, new Comparator<DictionaryPair>() { @Override public int compare(DictionaryPair o1, DictionaryPair o2) { if (o1 == null && o2 == null) { return 0; } if (o1 == null) { return 1; } if (o2 == null) { return -1; } return o1.compareTo(o2); } }); } private Node[] splitChildPointers(InternalNode in, int split) { Node[] pointers = in.childPointers; Node[] halfPointers = new Node[this.m + 1]; for (int i = split + 1; i < pointers.length; i++) { halfPointers[i - split - 1] = pointers[i]; in.removePointer(i); } return halfPointers; } private DictionaryPair[] splitDictionary(LeafNode ln, int split) { DictionaryPair[] dictionary = ln.dictionary; DictionaryPair[] halfDict = new DictionaryPair[this.m]; for (int i = split; i < dictionary.length; i++) { halfDict[i - split] = dictionary[i]; ln.delete(i); } return halfDict; } private void splitInternalNode(InternalNode in) { InternalNode parent = in.parent; int midpoint = getMidpoint(); int newParentKey = in.keys[midpoint]; Integer[] halfKeys = splitKeys(in.keys, midpoint); Node[] halfPointers = splitChildPointers(in, midpoint); in.degree = linearNullSearch(in.childPointers); InternalNode sibling = new InternalNode(this.m, halfKeys, halfPointers); for (Node pointer : halfPointers) { if (pointer != null) { pointer.parent = sibling; } } sibling.rightSibling = in.rightSibling; if (sibling.rightSibling != null) { sibling.rightSibling.leftSibling = sibling; } in.rightSibling = sibling; sibling.leftSibling = in; if (parent == null) { Integer[] keys = new Integer[this.m]; keys[0] = newParentKey; InternalNode newRoot = new InternalNode(this.m, keys); newRoot.appendChildPointer(in); newRoot.appendChildPointer(sibling); this.root = newRoot; in.parent = newRoot; sibling.parent = newRoot; } else { parent.keys[parent.degree - 1] = newParentKey; Arrays.sort(parent.keys, 0, parent.degree); int pointerIndex = parent.findIndexOfPointer(in) + 1; parent.insertChildPointer(sibling, pointerIndex); sibling.parent = parent; } } private Integer[] splitKeys(Integer[] keys, int split) { Integer[] halfKeys = new Integer[this.m]; keys[split] = null; for (int i = split + 1; i < keys.length; i++) { halfKeys[i - split - 1] = keys[i]; keys[i] = null; } return halfKeys; } public void insert(int key, double value) { if (isEmpty()) { LeafNode ln = new LeafNode(this.m, new DictionaryPair(key, value)); this.firstLeaf = ln; } else { LeafNode ln = (this.root == null) ? this.firstLeaf : findLeafNode(key); if (!ln.insert(new DictionaryPair(key, value))) { ln.dictionary[ln.numPairs] = new DictionaryPair(key, value); ln.numPairs++; sortDictionary(ln.dictionary); int midpoint = getMidpoint(); DictionaryPair[] halfDict = splitDictionary(ln, midpoint); if (ln.parent == null) { Integer[] parent_keys = new Integer[this.m]; parent_keys[0] = halfDict[0].key; InternalNode parent = new InternalNode(this.m, parent_keys); ln.parent = parent; parent.appendChildPointer(ln); } else { int newParentKey = halfDict[0].key; ln.parent.keys[ln.parent.degree - 1] = newParentKey; Arrays.sort(ln.parent.keys, 0, ln.parent.degree); } LeafNode newLeafNode = new LeafNode(this.m, halfDict, ln.parent); int pointerIndex = ln.parent.findIndexOfPointer(ln) + 1; ln.parent.insertChildPointer(newLeafNode, pointerIndex); newLeafNode.rightSibling = ln.rightSibling; if (newLeafNode.rightSibling != null) { newLeafNode.rightSibling.leftSibling = newLeafNode; } ln.rightSibling = newLeafNode; newLeafNode.leftSibling = ln; if (this.root == null) { this.root = ln.parent; } else { InternalNode in = ln.parent; while (in != null) { if (in.isOverfull()) { splitInternalNode(in); } else { break; } in = in.parent; } } } } } public Double search(int key) { if (isEmpty()) { return null; } LeafNode ln = (this.root == null) ? this.firstLeaf : findLeafNode(key); DictionaryPair[] dps = ln.dictionary; int index = binarySearch(dps, ln.numPairs, key); if (index < 0) { return null; } else { return dps[index].value; } } public ArrayList<Double> search(int lowerBound, int upperBound) { ArrayList<Double> values = new ArrayList<Double>(); LeafNode currNode = this.firstLeaf; while (currNode != null) { DictionaryPair dps[] = currNode.dictionary; for (DictionaryPair dp : dps) { if (dp == null) { break; } if (lowerBound <= dp.key && dp.key <= upperBound) { values.add(dp.value); } } currNode = currNode.rightSibling; } return values; } public BPlusTree(int m) { this.m = m; this.root = null; } public class Node { InternalNode parent; } private class InternalNode extends Node { int maxDegree; int minDegree; int degree; InternalNode leftSibling; InternalNode rightSibling; Integer[] keys; Node[] childPointers; private void appendChildPointer(Node pointer) { this.childPointers[degree] = pointer; this.degree++; } private int findIndexOfPointer(Node pointer) { for (int i = 0; i < childPointers.length; i++) { if (childPointers[i] == pointer) { return i; } } return -1; } private void insertChildPointer(Node pointer, int index) { for (int i = degree - 1; i >= index; i--) { childPointers[i + 1] = childPointers[i]; } this.childPointers[index] = pointer; this.degree++; } private boolean isDeficient() { return this.degree < this.minDegree; } private boolean isLendable() { return this.degree > this.minDegree; } private boolean isMergeable() { return this.degree == this.minDegree; } private boolean isOverfull() { return this.degree == maxDegree + 1; } private void prependChildPointer(Node pointer) { for (int i = degree - 1; i >= 0; i--) { childPointers[i + 1] = childPointers[i]; } this.childPointers[0] = pointer; this.degree++; } private void removeKey(int index) { this.keys[index] = null; } private void removePointer(int index) { this.childPointers[index] = null; this.degree--; } private void removePointer(Node pointer) { for (int i = 0; i < childPointers.length; i++) { if (childPointers[i] == pointer) { this.childPointers[i] = null; } } this.degree--; } private InternalNode(int m, Integer[] keys) { this.maxDegree = m; this.minDegree = (int) Math.ceil(m / 2.0); this.degree = 0; this.keys = keys; this.childPointers = new Node[this.maxDegree + 1]; } private InternalNode(int m, Integer[] keys, Node[] pointers) { this.maxDegree = m; this.minDegree = (int) Math.ceil(m / 2.0); this.degree = linearNullSearch(pointers); this.keys = keys; this.childPointers = pointers; } } public class LeafNode extends Node { int maxNumPairs; int minNumPairs; int numPairs; LeafNode leftSibling; LeafNode rightSibling; DictionaryPair[] dictionary; public void delete(int index) { this.dictionary[index] = null; numPairs--; } public boolean insert(DictionaryPair dp) { if (this.isFull()) { return false; } else { this.dictionary[numPairs] = dp; numPairs++; Arrays.sort(this.dictionary, 0, numPairs); return true; } } public boolean isDeficient() { return numPairs < minNumPairs; } public boolean isFull() { return numPairs == maxNumPairs; } public boolean isLendable() { return numPairs > minNumPairs; } public boolean isMergeable() { return numPairs == minNumPairs; } public LeafNode(int m, DictionaryPair dp) { this.maxNumPairs = m - 1; this.minNumPairs = (int) (Math.ceil(m / 2) - 1); this.dictionary = new DictionaryPair[m]; this.numPairs = 0; this.insert(dp); } public LeafNode(int m, DictionaryPair[] dps, InternalNode parent) { this.maxNumPairs = m - 1; this.minNumPairs = (int) (Math.ceil(m / 2) - 1); this.dictionary = dps; this.numPairs = linearNullSearch(dps); this.parent = parent; } } public class DictionaryPair implements Comparable<DictionaryPair> { int key; double value; public DictionaryPair(int key, double value) { this.key = key; this.value = value; } public int compareTo(DictionaryPair o) { if (key == o.key) { return 0; } else if (key > o.key) { return 1; } else { return -1; } } } public static void main(String[] args) { BPlusTree bpt = null; bpt = new BPlusTree(3); bpt.insert(5, 33); bpt.insert(15, 21); bpt.insert(25, 31); bpt.insert(35, 41); bpt.insert(45, 10); if (bpt.search(15) != null) { System.out.println("Found"); } else { System.out.println("Not Found"); } ; } }
C
// Deletion on a B+ Tree in C #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> // Default order #define ORDER 3 typedef struct record { int value; } record; // Node typedef struct node { void **pointers; int *keys; struct node *parent; bool is_leaf; int num_keys; struct node *next; } node; int order = ORDER; node *queue = NULL; bool verbose_output = false; // Enqueue void enqueue(node *new_node); // Dequeue node *dequeue(void); int height(node *const root); int pathToLeaves(node *const root, node *child); void printLeaves(node *const root); void printTree(node *const root); void findAndPrint(node *const root, int key, bool verbose); void findAndPrintRange(node *const root, int range1, int range2, bool verbose); int findRange(node *const root, int key_start, int key_end, bool verbose, int returned_keys[], void *returned_pointers[]); node *findLeaf(node *const root, int key, bool verbose); record *find(node *root, int key, bool verbose, node **leaf_out); int cut(int length); record *makeRecord(int value); node *makeNode(void); node *makeLeaf(void); int getLeftIndex(node *parent, node *left); node *insertIntoLeaf(node *leaf, int key, record *pointer); node *insertIntoLeafAfterSplitting(node *root, node *leaf, int key, record *pointer); node *insertIntoNode(node *root, node *parent, int left_index, int key, node *right); node *insertIntoNodeAfterSplitting(node *root, node *parent, int left_index, int key, node *right); node *insertIntoParent(node *root, node *left, int key, node *right); node *insertIntoNewRoot(node *left, int key, node *right); node *startNewTree(int key, record *pointer); node *insert(node *root, int key, int value); // Enqueue void enqueue(node *new_node) { node *c; if (queue == NULL) { queue = new_node; queue->next = NULL; } else { c = queue; while (c->next != NULL) { c = c->next; } c->next = new_node; new_node->next = NULL; } } // Dequeue node *dequeue(void) { node *n = queue; queue = queue->next; n->next = NULL; return n; } // Print the leaves void printLeaves(node *const root) { if (root == NULL) { printf("Empty tree.\n"); return; } int i; node *c = root; while (!c->is_leaf) c = c->pointers[0]; while (true) { for (i = 0; i < c->num_keys; i++) { if (verbose_output) printf("%p ", c->pointers[i]); printf("%d ", c->keys[i]); } if (verbose_output) printf("%p ", c->pointers[order - 1]); if (c->pointers[order - 1] != NULL) { printf(" | "); c = c->pointers[order - 1]; } else break; } printf("\n"); } // Calculate height int height(node *const root) { int h = 0; node *c = root; while (!c->is_leaf) { c = c->pointers[0]; h++; } return h; } // Get path to root int pathToLeaves(node *const root, node *child) { int length = 0; node *c = child; while (c != root) { c = c->parent; length++; } return length; } // Print the tree void printTree(node *const root) { node *n = NULL; int i = 0; int rank = 0; int new_rank = 0; if (root == NULL) { printf("Empty tree.\n"); return; } queue = NULL; enqueue(root); while (queue != NULL) { n = dequeue(); if (n->parent != NULL && n == n->parent->pointers[0]) { new_rank = pathToLeaves(root, n); if (new_rank != rank) { rank = new_rank; printf("\n"); } } if (verbose_output) printf("(%p)", n); for (i = 0; i < n->num_keys; i++) { if (verbose_output) printf("%p ", n->pointers[i]); printf("%d ", n->keys[i]); } if (!n->is_leaf) for (i = 0; i <= n->num_keys; i++) enqueue(n->pointers[i]); if (verbose_output) { if (n->is_leaf) printf("%p ", n->pointers[order - 1]); else printf("%p ", n->pointers[n->num_keys]); } printf("| "); } printf("\n"); } // Find the node and print it void findAndPrint(node *const root, int key, bool verbose) { node *leaf = NULL; record *r = find(root, key, verbose, NULL); if (r == NULL) printf("Record not found under key %d.\n", key); else printf("Record at %p -- key %d, value %d.\n", r, key, r->value); } // Find and print the range void findAndPrintRange(node *const root, int key_start, int key_end, bool verbose) { int i; int array_size = key_end - key_start + 1; int returned_keys[array_size]; void *returned_pointers[array_size]; int num_found = findRange(root, key_start, key_end, verbose, returned_keys, returned_pointers); if (!num_found) printf("None found.\n"); else { for (i = 0; i < num_found; i++) printf("Key: %d Location: %p Value: %d\n", returned_keys[i], returned_pointers[i], ((record *) returned_pointers[i]) ->value); } } // Find the range int findRange(node *const root, int key_start, int key_end, bool verbose, int returned_keys[], void *returned_pointers[]) { int i, num_found; num_found = 0; node *n = findLeaf(root, key_start, verbose); if (n == NULL) return 0; for (i = 0; i < n->num_keys && n->keys[i] < key_start; i++) ; if (i == n->num_keys) return 0; while (n != NULL) { for (; i < n->num_keys && n->keys[i] <= key_end; i++) { returned_keys[num_found] = n->keys[i]; returned_pointers[num_found] = n->pointers[i]; num_found++; } n = n->pointers[order - 1]; i = 0; } return num_found; } // Find the leaf node *findLeaf(node *const root, int key, bool verbose) { if (root == NULL) { if (verbose) printf("Empty tree.\n"); return root; } int i = 0; node *c = root; while (!c->is_leaf) { if (verbose) { printf("["); for (i = 0; i < c->num_keys - 1; i++) printf("%d ", c->keys[i]); printf("%d] ", c->keys[i]); } i = 0; while (i < c->num_keys) { if (key >= c->keys[i]) i++; else break; } if (verbose) printf("%d ->\n", i); c = (node *)c->pointers[i]; } if (verbose) { printf("Leaf ["); for (i = 0; i < c->num_keys - 1; i++) printf("%d ", c->keys[i]); printf("%d] ->\n", c->keys[i]); } return c; } record *find(node *root, int key, bool verbose, node **leaf_out) { if (root == NULL) { if (leaf_out != NULL) { *leaf_out = NULL; } return NULL; } int i = 0; node *leaf = NULL; leaf = findLeaf(root, key, verbose); for (i = 0; i < leaf->num_keys; i++) if (leaf->keys[i] == key) break; if (leaf_out != NULL) { *leaf_out = leaf; } if (i == leaf->num_keys) return NULL; else return (record *)leaf->pointers[i]; } int cut(int length) { if (length % 2 == 0) return length / 2; else return length / 2 + 1; } record *makeRecord(int value) { record *new_record = (record *)malloc(sizeof(record)); if (new_record == NULL) { perror("Record creation."); exit(EXIT_FAILURE); } else { new_record->value = value; } return new_record; } node *makeNode(void) { node *new_node; new_node = malloc(sizeof(node)); if (new_node == NULL) { perror("Node creation."); exit(EXIT_FAILURE); } new_node->keys = malloc((order - 1) * sizeof(int)); if (new_node->keys == NULL) { perror("New node keys array."); exit(EXIT_FAILURE); } new_node->pointers = malloc(order * sizeof(void *)); if (new_node->pointers == NULL) { perror("New node pointers array."); exit(EXIT_FAILURE); } new_node->is_leaf = false; new_node->num_keys = 0; new_node->parent = NULL; new_node->next = NULL; return new_node; } node *makeLeaf(void) { node *leaf = makeNode(); leaf->is_leaf = true; return leaf; } int getLeftIndex(node *parent, node *left) { int left_index = 0; while (left_index <= parent->num_keys && parent->pointers[left_index] != left) left_index++; return left_index; } node *insertIntoLeaf(node *leaf, int key, record *pointer) { int i, insertion_point; insertion_point = 0; while (insertion_point < leaf->num_keys && leaf->keys[insertion_point] < key) insertion_point++; for (i = leaf->num_keys; i > insertion_point; i--) { leaf->keys[i] = leaf->keys[i - 1]; leaf->pointers[i] = leaf->pointers[i - 1]; } leaf->keys[insertion_point] = key; leaf->pointers[insertion_point] = pointer; leaf->num_keys++; return leaf; } node *insertIntoLeafAfterSplitting(node *root, node *leaf, int key, record *pointer) { node *new_leaf; int *temp_keys; void **temp_pointers; int insertion_index, split, new_key, i, j; new_leaf = makeLeaf(); temp_keys = malloc(order * sizeof(int)); if (temp_keys == NULL) { perror("Temporary keys array."); exit(EXIT_FAILURE); } temp_pointers = malloc(order * sizeof(void *)); if (temp_pointers == NULL) { perror("Temporary pointers array."); exit(EXIT_FAILURE); } insertion_index = 0; while (insertion_index < order - 1 && leaf->keys[insertion_index] < key) insertion_index++; for (i = 0, j = 0; i < leaf->num_keys; i++, j++) { if (j == insertion_index) j++; temp_keys[j] = leaf->keys[i]; temp_pointers[j] = leaf->pointers[i]; } temp_keys[insertion_index] = key; temp_pointers[insertion_index] = pointer; leaf->num_keys = 0; split = cut(order - 1); for (i = 0; i < split; i++) { leaf->pointers[i] = temp_pointers[i]; leaf->keys[i] = temp_keys[i]; leaf->num_keys++; } for (i = split, j = 0; i < order; i++, j++) { new_leaf->pointers[j] = temp_pointers[i]; new_leaf->keys[j] = temp_keys[i]; new_leaf->num_keys++; } free(temp_pointers); free(temp_keys); new_leaf->pointers[order - 1] = leaf->pointers[order - 1]; leaf->pointers[order - 1] = new_leaf; for (i = leaf->num_keys; i < order - 1; i++) leaf->pointers[i] = NULL; for (i = new_leaf->num_keys; i < order - 1; i++) new_leaf->pointers[i] = NULL; new_leaf->parent = leaf->parent; new_key = new_leaf->keys[0]; return insertIntoParent(root, leaf, new_key, new_leaf); } node *insertIntoNode(node *root, node *n, int left_index, int key, node *right) { int i; for (i = n->num_keys; i > left_index; i--) { n->pointers[i + 1] = n->pointers[i]; n->keys[i] = n->keys[i - 1]; } n->pointers[left_index + 1] = right; n->keys[left_index] = key; n->num_keys++; return root; } node *insertIntoNodeAfterSplitting(node *root, node *old_node, int left_index, int key, node *right) { int i, j, split, k_prime; node *new_node, *child; int *temp_keys; node **temp_pointers; temp_pointers = malloc((order + 1) * sizeof(node *)); if (temp_pointers == NULL) { exit(EXIT_FAILURE); } temp_keys = malloc(order * sizeof(int)); if (temp_keys == NULL) { exit(EXIT_FAILURE); } for (i = 0, j = 0; i < old_node->num_keys + 1; i++, j++) { if (j == left_index + 1) j++; temp_pointers[j] = old_node->pointers[i]; } for (i = 0, j = 0; i < old_node->num_keys; i++, j++) { if (j == left_index) j++; temp_keys[j] = old_node->keys[i]; } temp_pointers[left_index + 1] = right; temp_keys[left_index] = key; split = cut(order); new_node = makeNode(); old_node->num_keys = 0; for (i = 0; i < split - 1; i++) { old_node->pointers[i] = temp_pointers[i]; old_node->keys[i] = temp_keys[i]; old_node->num_keys++; } old_node->pointers[i] = temp_pointers[i]; k_prime = temp_keys[split - 1]; for (++i, j = 0; i < order; i++, j++) { new_node->pointers[j] = temp_pointers[i]; new_node->keys[j] = temp_keys[i]; new_node->num_keys++; } new_node->pointers[j] = temp_pointers[i]; free(temp_pointers); free(temp_keys); new_node->parent = old_node->parent; for (i = 0; i <= new_node->num_keys; i++) { child = new_node->pointers[i]; child->parent = new_node; } return insertIntoParent(root, old_node, k_prime, new_node); } node *insertIntoParent(node *root, node *left, int key, node *right) { int left_index; node *parent; parent = left->parent; if (parent == NULL) return insertIntoNewRoot(left, key, right); left_index = getLeftIndex(parent, left); if (parent->num_keys < order - 1) return insertIntoNode(root, parent, left_index, key, right); return insertIntoNodeAfterSplitting(root, parent, left_index, key, right); } node *insertIntoNewRoot(node *left, int key, node *right) { node *root = makeNode(); root->keys[0] = key; root->pointers[0] = left; root->pointers[1] = right; root->num_keys++; root->parent = NULL; left->parent = root; right->parent = root; return root; } node *startNewTree(int key, record *pointer) { node *root = makeLeaf(); root->keys[0] = key; root->pointers[0] = pointer; root->pointers[order - 1] = NULL; root->parent = NULL; root->num_keys++; return root; } node *insert(node *root, int key, int value) { record *record_pointer = NULL; node *leaf = NULL; record_pointer = find(root, key, false, NULL); if (record_pointer != NULL) { record_pointer->value = value; return root; } record_pointer = makeRecord(value); if (root == NULL) return startNewTree(key, record_pointer); leaf = findLeaf(root, key, false); if (leaf->num_keys < order - 1) { leaf = insertIntoLeaf(leaf, key, record_pointer); return root; } return insertIntoLeafAfterSplitting(root, leaf, key, record_pointer); } int main() { node *root; char instruction; root = NULL; root = insert(root, 5, 33); root = insert(root, 15, 21); root = insert(root, 25, 31); root = insert(root, 35, 41); root = insert(root, 45, 10); printTree(root); findAndPrint(root, 15, instruction = 'a'); }
C++
// Deletion operation on a B+ Tree in C++ #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #define DEFAULT_ORDER 3 typedef struct record { int value; } record; typedef struct node { void **pointers; int *keys; struct node *parent; bool is_leaf; int num_keys; struct node *next; } node; int order = DEFAULT_ORDER; node *queue = NULL; bool verbose_output = false; void enqueue(node *new_node); node *dequeue(void); int height(node *const root); int path_to_root(node *const root, node *child); void print_leaves(node *const root); void print_tree(node *const root); void find_and_print(node *const root, int key, bool verbose); void find_and_print_range(node *const root, int range1, int range2, bool verbose); int find_range(node *const root, int key_start, int key_end, bool verbose, int returned_keys[], void *returned_pointers[]); node *find_leaf(node *const root, int key, bool verbose); record *find(node *root, int key, bool verbose, node **leaf_out); int cut(int length); record *make_record(int value); node *make_node(void); node *make_leaf(void); int get_left_index(node *parent, node *left); node *insert_into_leaf(node *leaf, int key, record *pointer); node *insert_into_leaf_after_splitting(node *root, node *leaf, int key, record *pointer); node *insert_into_node(node *root, node *parent, int left_index, int key, node *right); node *insert_into_node_after_splitting(node *root, node *parent, int left_index, int key, node *right); node *insert_into_parent(node *root, node *left, int key, node *right); node *insert_into_new_root(node *left, int key, node *right); node *start_new_tree(int key, record *pointer); node *insert(node *root, int key, int value); int get_neighbor_index(node *n); node *adjust_root(node *root); node *coalesce_nodes(node *root, node *n, node *neighbor, int neighbor_index, int k_prime); node *redistribute_nodes(node *root, node *n, node *neighbor, int neighbor_index, int k_prime_index, int k_prime); node *delete_entry(node *root, node *n, int key, void *pointer); node *delete (node *root, int key); void enqueue(node *new_node) { node *c; if (queue == NULL) { queue = new_node; queue->next = NULL; } else { c = queue; while (c->next != NULL) { c = c->next; } c->next = new_node; new_node->next = NULL; } } node *dequeue(void) { node *n = queue; queue = queue->next; n->next = NULL; return n; } void print_leaves(node *const root) { if (root == NULL) { printf("Empty tree.\n"); return; } int i; node *c = root; while (!c->is_leaf) c = c->pointers[0]; while (true) { for (i = 0; i < c->num_keys; i++) { if (verbose_output) printf("%p ", c->pointers[i]); printf("%d ", c->keys[i]); } if (verbose_output) printf("%p ", c->pointers[order - 1]); if (c->pointers[order - 1] != NULL) { printf(" | "); c = c->pointers[order - 1]; } else break; } printf("\n"); } int height(node *const root) { int h = 0; node *c = root; while (!c->is_leaf) { c = c->pointers[0]; h++; } return h; } int path_to_root(node *const root, node *child) { int length = 0; node *c = child; while (c != root) { c = c->parent; length++; } return length; } void print_tree(node *const root) { node *n = NULL; int i = 0; int rank = 0; int new_rank = 0; if (root == NULL) { printf("Empty tree.\n"); return; } queue = NULL; enqueue(root); while (queue != NULL) { n = dequeue(); if (n->parent != NULL && n == n->parent->pointers[0]) { new_rank = path_to_root(root, n); if (new_rank != rank) { rank = new_rank; printf("\n"); } } if (verbose_output) printf("(%p)", n); for (i = 0; i < n->num_keys; i++) { if (verbose_output) printf("%p ", n->pointers[i]); printf("%d ", n->keys[i]); } if (!n->is_leaf) for (i = 0; i <= n->num_keys; i++) enqueue(n->pointers[i]); if (verbose_output) { if (n->is_leaf) printf("%p ", n->pointers[order - 1]); else printf("%p ", n->pointers[n->num_keys]); } printf("| "); } printf("\n"); } void find_and_print(node *const root, int key, bool verbose) { node *leaf = NULL; record *r = find(root, key, verbose, NULL); if (r == NULL) printf("Record not found under key %d.\n", key); else printf("Record at %p -- key %d, value %d.\n", r, key, r->value); } void find_and_print_range(node *const root, int key_start, int key_end, bool verbose) { int i; int array_size = key_end - key_start + 1; int returned_keys[array_size]; void *returned_pointers[array_size]; int num_found = find_range(root, key_start, key_end, verbose, returned_keys, returned_pointers); if (!num_found) printf("None found.\n"); else { for (i = 0; i < num_found; i++) printf("Key: %d Location: %p Value: %d\n", returned_keys[i], returned_pointers[i], ((record *) returned_pointers[i]) ->value); } } int find_range(node *const root, int key_start, int key_end, bool verbose, int returned_keys[], void *returned_pointers[]) { int i, num_found; num_found = 0; node *n = find_leaf(root, key_start, verbose); if (n == NULL) return 0; for (i = 0; i < n->num_keys && n->keys[i] < key_start; i++) ; if (i == n->num_keys) return 0; while (n != NULL) { for (; i < n->num_keys && n->keys[i] <= key_end; i++) { returned_keys[num_found] = n->keys[i]; returned_pointers[num_found] = n->pointers[i]; num_found++; } n = n->pointers[order - 1]; i = 0; } return num_found; } node *find_leaf(node *const root, int key, bool verbose) { if (root == NULL) { if (verbose) printf("Empty tree.\n"); return root; } int i = 0; node *c = root; while (!c->is_leaf) { if (verbose) { printf("["); for (i = 0; i < c->num_keys - 1; i++) printf("%d ", c->keys[i]); printf("%d] ", c->keys[i]); } i = 0; while (i < c->num_keys) { if (key >= c->keys[i]) i++; else break; } if (verbose) printf("%d ->\n", i); c = (node *)c->pointers[i]; } if (verbose) { printf("Leaf ["); for (i = 0; i < c->num_keys - 1; i++) printf("%d ", c->keys[i]); printf("%d] ->\n", c->keys[i]); } return c; } record *find(node *root, int key, bool verbose, node **leaf_out) { if (root == NULL) { if (leaf_out != NULL) { *leaf_out = NULL; } return NULL; } int i = 0; node *leaf = NULL; leaf = find_leaf(root, key, verbose); for (i = 0; i < leaf->num_keys; i++) if (leaf->keys[i] == key) break; if (leaf_out != NULL) { *leaf_out = leaf; } if (i == leaf->num_keys) return NULL; else return (record *)leaf->pointers[i]; } int cut(int length) { if (length % 2 == 0) return length / 2; else return length / 2 + 1; } record *make_record(int value) { record *new_record = (record *)malloc(sizeof(record)); if (new_record == NULL) { perror("Record creation."); exit(EXIT_FAILURE); } else { new_record->value = value; } return new_record; } node *make_node(void) { node *new_node; new_node = malloc(sizeof(node)); if (new_node == NULL) { perror("Node creation."); exit(EXIT_FAILURE); } new_node->keys = malloc((order - 1) * sizeof(int)); if (new_node->keys == NULL) { perror("New node keys array."); exit(EXIT_FAILURE); } new_node->pointers = malloc(order * sizeof(void *)); if (new_node->pointers == NULL) { perror("New node pointers array."); exit(EXIT_FAILURE); } new_node->is_leaf = false; new_node->num_keys = 0; new_node->parent = NULL; new_node->next = NULL; return new_node; } node *make_leaf(void) { node *leaf = make_node(); leaf->is_leaf = true; return leaf; } int get_left_index(node *parent, node *left) { int left_index = 0; while (left_index <= parent->num_keys && parent->pointers[left_index] != left) left_index++; return left_index; } node *insert_into_leaf(node *leaf, int key, record *pointer) { int i, insertion_point; insertion_point = 0; while (insertion_point < leaf->num_keys && leaf->keys[insertion_point] < key) insertion_point++; for (i = leaf->num_keys; i > insertion_point; i--) { leaf->keys[i] = leaf->keys[i - 1]; leaf->pointers[i] = leaf->pointers[i - 1]; } leaf->keys[insertion_point] = key; leaf->pointers[insertion_point] = pointer; leaf->num_keys++; return leaf; } node *insert_into_leaf_after_splitting(node *root, node *leaf, int key, record *pointer) { node *new_leaf; int *temp_keys; void **temp_pointers; int insertion_index, split, new_key, i, j; new_leaf = make_leaf(); temp_keys = malloc(order * sizeof(int)); if (temp_keys == NULL) { perror("Temporary keys array."); exit(EXIT_FAILURE); } temp_pointers = malloc(order * sizeof(void *)); if (temp_pointers == NULL) { perror("Temporary pointers array."); exit(EXIT_FAILURE); } insertion_index = 0; while (insertion_index < order - 1 && leaf->keys[insertion_index] < key) insertion_index++; for (i = 0, j = 0; i < leaf->num_keys; i++, j++) { if (j == insertion_index) j++; temp_keys[j] = leaf->keys[i]; temp_pointers[j] = leaf->pointers[i]; } temp_keys[insertion_index] = key; temp_pointers[insertion_index] = pointer; leaf->num_keys = 0; split = cut(order - 1); for (i = 0; i < split; i++) { leaf->pointers[i] = temp_pointers[i]; leaf->keys[i] = temp_keys[i]; leaf->num_keys++; } for (i = split, j = 0; i < order; i++, j++) { new_leaf->pointers[j] = temp_pointers[i]; new_leaf->keys[j] = temp_keys[i]; new_leaf->num_keys++; } free(temp_pointers); free(temp_keys); new_leaf->pointers[order - 1] = leaf->pointers[order - 1]; leaf->pointers[order - 1] = new_leaf; for (i = leaf->num_keys; i < order - 1; i++) leaf->pointers[i] = NULL; for (i = new_leaf->num_keys; i < order - 1; i++) new_leaf->pointers[i] = NULL; new_leaf->parent = leaf->parent; new_key = new_leaf->keys[0]; return insert_into_parent(root, leaf, new_key, new_leaf); } node *insert_into_node(node *root, node *n, int left_index, int key, node *right) { int i; for (i = n->num_keys; i > left_index; i--) { n->pointers[i + 1] = n->pointers[i]; n->keys[i] = n->keys[i - 1]; } n->pointers[left_index + 1] = right; n->keys[left_index] = key; n->num_keys++; return root; } node *insert_into_node_after_splitting(node *root, node *old_node, int left_index, int key, node *right) { int i, j, split, k_prime; node *new_node, *child; int *temp_keys; node **temp_pointers; temp_pointers = malloc((order + 1) * sizeof(node *)); if (temp_pointers == NULL) { perror("Temporary pointers array for splitting nodes."); exit(EXIT_FAILURE); } temp_keys = malloc(order * sizeof(int)); if (temp_keys == NULL) { perror("Temporary keys array for splitting nodes."); exit(EXIT_FAILURE); } for (i = 0, j = 0; i < old_node->num_keys + 1; i++, j++) { if (j == left_index + 1) j++; temp_pointers[j] = old_node->pointers[i]; } for (i = 0, j = 0; i < old_node->num_keys; i++, j++) { if (j == left_index) j++; temp_keys[j] = old_node->keys[i]; } temp_pointers[left_index + 1] = right; temp_keys[left_index] = key; split = cut(order); new_node = make_node(); old_node->num_keys = 0; for (i = 0; i < split - 1; i++) { old_node->pointers[i] = temp_pointers[i]; old_node->keys[i] = temp_keys[i]; old_node->num_keys++; } old_node->pointers[i] = temp_pointers[i]; k_prime = temp_keys[split - 1]; for (++i, j = 0; i < order; i++, j++) { new_node->pointers[j] = temp_pointers[i]; new_node->keys[j] = temp_keys[i]; new_node->num_keys++; } new_node->pointers[j] = temp_pointers[i]; free(temp_pointers); free(temp_keys); new_node->parent = old_node->parent; for (i = 0; i <= new_node->num_keys; i++) { child = new_node->pointers[i]; child->parent = new_node; } return insert_into_parent(root, old_node, k_prime, new_node); } node *insert_into_parent(node *root, node *left, int key, node *right) { int left_index; node *parent; parent = left->parent; if (parent == NULL) return insert_into_new_root(left, key, right); left_index = get_left_index(parent, left); if (parent->num_keys < order - 1) return insert_into_node(root, parent, left_index, key, right); return insert_into_node_after_splitting(root, parent, left_index, key, right); } node *insert_into_new_root(node *left, int key, node *right) { node *root = make_node(); root->keys[0] = key; root->pointers[0] = left; root->pointers[1] = right; root->num_keys++; root->parent = NULL; left->parent = root; right->parent = root; return root; } node *start_new_tree(int key, record *pointer) { node *root = make_leaf(); root->keys[0] = key; root->pointers[0] = pointer; root->pointers[order - 1] = NULL; root->parent = NULL; root->num_keys++; return root; } node *insert(node *root, int key, int value) { record *record_pointer = NULL; node *leaf = NULL; record_pointer = find(root, key, false, NULL); if (record_pointer != NULL) { record_pointer->value = value; return root; } record_pointer = make_record(value); if (root == NULL) return start_new_tree(key, record_pointer); leaf = find_leaf(root, key, false); if (leaf->num_keys < order - 1) { leaf = insert_into_leaf(leaf, key, record_pointer); return root; } return insert_into_leaf_after_splitting(root, leaf, key, record_pointer); } int get_neighbor_index(node *n) { int i; for (i = 0; i <= n->parent->num_keys; i++) if (n->parent->pointers[i] == n) return i - 1; printf("Search for nonexistent pointer to node in parent.\n"); printf("Node: %#lx\n", (unsigned long)n); exit(EXIT_FAILURE); } node *remove_entry_from_node(node *n, int key, node *pointer) { int i, num_pointers; i = 0; while (n->keys[i] != key) i++; for (++i; i < n->num_keys; i++) n->keys[i - 1] = n->keys[i]; num_pointers = n->is_leaf ? n->num_keys : n->num_keys + 1; i = 0; while (n->pointers[i] != pointer) i++; for (++i; i < num_pointers; i++) n->pointers[i - 1] = n->pointers[i]; n->num_keys--; if (n->is_leaf) for (i = n->num_keys; i < order - 1; i++) n->pointers[i] = NULL; else for (i = n->num_keys + 1; i < order; i++) n->pointers[i] = NULL; return n; } node *adjust_root(node *root) { node *new_root; if (root->num_keys > 0) return root; if (!root->is_leaf) { new_root = root->pointers[0]; new_root->parent = NULL; } else new_root = NULL; free(root->keys); free(root->pointers); free(root); return new_root; } node *coalesce_nodes(node *root, node *n, node *neighbor, int neighbor_index, int k_prime) { int i, j, neighbor_insertion_index, n_end; node *tmp; if (neighbor_index == -1) { tmp = n; n = neighbor; neighbor = tmp; } neighbor_insertion_index = neighbor->num_keys; if (!n->is_leaf) { neighbor->keys[neighbor_insertion_index] = k_prime; neighbor->num_keys++; n_end = n->num_keys; for (i = neighbor_insertion_index + 1, j = 0; j < n_end; i++, j++) { neighbor->keys[i] = n->keys[j]; neighbor->pointers[i] = n->pointers[j]; neighbor->num_keys++; n->num_keys--; } neighbor->pointers[i] = n->pointers[j]; for (i = 0; i < neighbor->num_keys + 1; i++) { tmp = (node *)neighbor->pointers[i]; tmp->parent = neighbor; } } else { for (i = neighbor_insertion_index, j = 0; j < n->num_keys; i++, j++) { neighbor->keys[i] = n->keys[j]; neighbor->pointers[i] = n->pointers[j]; neighbor->num_keys++; } neighbor->pointers[order - 1] = n->pointers[order - 1]; } root = delete_entry(root, n->parent, k_prime, n); free(n->keys); free(n->pointers); free(n); return root; } node *redistribute_nodes(node *root, node *n, node *neighbor, int neighbor_index, int k_prime_index, int k_prime) { int i; node *tmp; if (neighbor_index != -1) { if (!n->is_leaf) n->pointers[n->num_keys + 1] = n->pointers[n->num_keys]; for (i = n->num_keys; i > 0; i--) { n->keys[i] = n->keys[i - 1]; n->pointers[i] = n->pointers[i - 1]; } if (!n->is_leaf) { n->pointers[0] = neighbor->pointers[neighbor->num_keys]; tmp = (node *)n->pointers[0]; tmp->parent = n; neighbor->pointers[neighbor->num_keys] = NULL; n->keys[0] = k_prime; n->parent->keys[k_prime_index] = neighbor->keys[neighbor->num_keys - 1]; } else { n->pointers[0] = neighbor->pointers[neighbor->num_keys - 1]; neighbor->pointers[neighbor->num_keys - 1] = NULL; n->keys[0] = neighbor->keys[neighbor->num_keys - 1]; n->parent->keys[k_prime_index] = n->keys[0]; } } else { if (n->is_leaf) { n->keys[n->num_keys] = neighbor->keys[0]; n->pointers[n->num_keys] = neighbor->pointers[0]; n->parent->keys[k_prime_index] = neighbor->keys[1]; } else { n->keys[n->num_keys] = k_prime; n->pointers[n->num_keys + 1] = neighbor->pointers[0]; tmp = (node *)n->pointers[n->num_keys + 1]; tmp->parent = n; n->parent->keys[k_prime_index] = neighbor->keys[0]; } for (i = 0; i < neighbor->num_keys - 1; i++) { neighbor->keys[i] = neighbor->keys[i + 1]; neighbor->pointers[i] = neighbor->pointers[i + 1]; } if (!n->is_leaf) neighbor->pointers[i] = neighbor->pointers[i + 1]; } n->num_keys++; neighbor->num_keys--; return root; } node *delete_entry(node *root, node *n, int key, void *pointer) { int min_keys; node *neighbor; int neighbor_index; int k_prime_index, k_prime; int capacity; n = remove_entry_from_node(n, key, pointer); if (n == root) return adjust_root(root); min_keys = n->is_leaf ? cut(order - 1) : cut(order) - 1; if (n->num_keys >= min_keys) return root; neighbor_index = get_neighbor_index(n); k_prime_index = neighbor_index == -1 ? 0 : neighbor_index; k_prime = n->parent->keys[k_prime_index]; neighbor = neighbor_index == -1 ? n->parent->pointers[1] : n->parent->pointers[neighbor_index]; capacity = n->is_leaf ? order : order - 1; if (neighbor->num_keys + n->num_keys < capacity) return coalesce_nodes(root, n, neighbor, neighbor_index, k_prime); else return redistribute_nodes(root, n, neighbor, neighbor_index, k_prime_index, k_prime); } node *delete (node *root, int key) { node *key_leaf = NULL; record *key_record = NULL; key_record = find(root, key, false, &key_leaf); if (key_record != NULL && key_leaf != NULL) { root = delete_entry(root, key_leaf, key, key_record); free(key_record); } return root; } void destroy_tree_nodes(node *root) { int i; if (root->is_leaf) for (i = 0; i < root->num_keys; i++) free(root->pointers[i]); else for (i = 0; i < root->num_keys + 1; i++) destroy_tree_nodes(root->pointers[i]); free(root->pointers); free(root->keys); free(root); } node *destroy_tree(node *root) { destroy_tree_nodes(root); return NULL; } int main() { node *root; char instruction; root = NULL; root = insert(root, 5, 33); root = insert(root, 15, 21); root = insert(root, 25, 31); root = insert(root, 35, 41); root = insert(root, 45, 10); print_tree(root); root = delete (root, 5); print_tree(root); }
Thanks for reading! We hope you found this tutorial helpful and we would love to hear your feedback in the Comments section below. And show us what you’ve learned by sharing your photos and creative projects with us.