In this article, you will learn-
Red-Black Tree Deletion
In this tutorial, you will learn how a node is deleted from a red-black tree is. Likewise, you will discover working instances of deletions performed on a red-black tree in C, C++, Java, and Python.
What is a Red-Black Tree?
Red-Black Tree is a Self-balanced binary search tree with one additional piece of storage per node: it’s color which can be either Red or Black.
Each node of the tree contains the attributes color, key, left pointer, right pointer, and parent(except root node).
On the off chance that a child of a node doesn’t exist, the comparing pointer property of the node contains the value NIL.
A red-Black tree is a self-balancing binary search tree in which every node contains an additional piece for signifying the color of the node, either red or black.
Before reading this article, please refer to the article on red-black tree.
Erasing a node may or may not disrupt the red-black properties of a red-black tree. In the event that this activity violates the red-black properties, a fixing algorithm is used to recover the red-blackproperties.
Deleting an element from a Red-Black Tree
This activity eliminates a node from the tree. In the wake of erasing a node, the red-black property is looked after once more.
- Let the nodeToBeDeleted be
2. Save the color of nodeToBeDeleted in origrinalColor.
3. In the event that the left child of nodeToBeDeleted is NULL
a. Assign the right child of nodeToBeDeleted to x.
b. Transplant nodeToBeDeleted with x.
4. Else if the right child of nodeToBeDeleted is NULL
a. Assign the left child of nodeToBeDeleted into x.
b. Transplant nodeToBeDeleted with x.
5. Else
a. Assign the minimum of right subtree of noteToBeDeleted into y.
b. Save the color of y in originalColor.
c. Assign the rightChild of y into x.
d. If y is a child of nodeToBeDeleted, then set the parent of x as y.
e. Else, transplant y with rightChild of y.
f. Transplant nodeToBeDeleted with y.
g. Set the color of y with originalColor.
6. If the originalColor is BLACK, call DeleteFix(x).
Algorithm to maintain Red-Black property after deletion
This algorithm is executed when a black node is erased in light of the fact that it violates the black depth property of the red-black tree.
This violation is corrected by assuming that node x (which is involving y’s unique position) has an additional black. This makes node x neither red nor black. It is either doubly black or black-and-red. This violates the red-black properties.
In any case, the color characteristic of x isn’t changed rather the additional black is addressed in x’s highlighting the node.
The additional black can be eliminated if
- It arrives at the root node.
2. In the event that x focuses on a red-black node. For this situation, x is colored black.
3. Reasonable rotations and recolorings are performed.
Following algorithm holds the properties of a red-black tree.
- Do the accompanying until the x isn’t the root of the tree and the color of x is BLACK
2. On the off chance that x is the left child of its parent,
a. Assign w to the sibling of x.
b. On the off chance that the sibling of x is RED,
Case-I:
a. Set the color of the right child of the parent of x as BLACK.
b. Set the color of the parent of x as RED.
c. Left-Rotate the parent of x.
d. Assign the rightChild of the parent of x to w.
c. In the event that the color of both the right and the leftChild of w is BLACK,
Case-II:
a. Set the color of w as RED
b. Assign the parent of x to x.
d. Else if the color of the rightChild of w is BLACK
Case-III:
a. Set the color of the leftChild of w as BLACK
b. Set the color of w as RED
c. Right-Rotate w.
d. Assign the rightChild of the parent of x to w.
e. In the event that any of the above cases don’t happen, do the accompanying.
Case-IV:
a. Set the color of w as the color of the parent of x.
b. Set the color of the parent of parent of x as BLACK.
c. Set the color of the right child of w as BLACK.
d. Left-Rotate the parent of x.
e. Set x as the root of the tree
3. Else same as above with right changed to left and the other way around.
4. Set the color of x as BLACK.
The work process of the above cases can be understood with the assistance of the flowchart beneath.
Python, Java and C/C++ Examples
Python
# Implementing Red-Black Tree in Python import sys # Node creation class Node(): def __init__(self, item): self.item = item self.parent = None self.left = None self.right = None self.color = 1 class RedBlackTree(): def __init__(self): self.TNULL = Node(0) self.TNULL.color = 0 self.TNULL.left = None self.TNULL.right = None self.root = self.TNULL # Preorder def pre_order_helper(self, node): if node != TNULL: sys.stdout.write(node.item + " ") self.pre_order_helper(node.left) self.pre_order_helper(node.right) # Inorder def in_order_helper(self, node): if node != TNULL: self.in_order_helper(node.left) sys.stdout.write(node.item + " ") self.in_order_helper(node.right) # Postorder def post_order_helper(self, node): if node != TNULL: self.post_order_helper(node.left) self.post_order_helper(node.right) sys.stdout.write(node.item + " ") # Search the tree def search_tree_helper(self, node, key): if node == TNULL or key == node.item: return node if key < node.item: return self.search_tree_helper(node.left, key) return self.search_tree_helper(node.right, key) # Balancing the tree after deletion def delete_fix(self, x): while x != self.root and x.color == 0: if x == x.parent.left: s = x.parent.right if s.color == 1: s.color = 0 x.parent.color = 1 self.left_rotate(x.parent) s = x.parent.right if s.left.color == 0 and s.right.color == 0: s.color = 1 x = x.parent else: if s.right.color == 0: s.left.color = 0 s.color = 1 self.right_rotate(s) s = x.parent.right s.color = x.parent.color x.parent.color = 0 s.right.color = 0 self.left_rotate(x.parent) x = self.root else: s = x.parent.left if s.color == 1: s.color = 0 x.parent.color = 1 self.right_rotate(x.parent) s = x.parent.left if s.right.color == 0 and s.right.color == 0: s.color = 1 x = x.parent else: if s.left.color == 0: s.right.color = 0 s.color = 1 self.left_rotate(s) s = x.parent.left s.color = x.parent.color x.parent.color = 0 s.left.color = 0 self.right_rotate(x.parent) x = self.root x.color = 0 def __rb_transplant(self, u, v): if u.parent == None: self.root = v elif u == u.parent.left: u.parent.left = v else: u.parent.right = v v.parent = u.parent # Node deletion def delete_node_helper(self, node, key): z = self.TNULL while node != self.TNULL: if node.item == key: z = node if node.item <= key: node = node.right else: node = node.left if z == self.TNULL: print("Cannot find key in the tree") return y = z y_original_color = y.color if z.left == self.TNULL: x = z.right self.__rb_transplant(z, z.right) elif (z.right == self.TNULL): x = z.left self.__rb_transplant(z, z.left) else: y = self.minimum(z.right) y_original_color = y.color x = y.right if y.parent == z: x.parent = y else: self.__rb_transplant(y, y.right) y.right = z.right y.right.parent = y self.__rb_transplant(z, y) y.left = z.left y.left.parent = y y.color = z.color if y_original_color == 0: self.delete_fix(x) # Balance the tree after insertion def fix_insert(self, k): while k.parent.color == 1: if k.parent == k.parent.parent.right: u = k.parent.parent.left if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.left: k = k.parent self.right_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.left_rotate(k.parent.parent) else: u = k.parent.parent.right if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.right: k = k.parent self.left_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.right_rotate(k.parent.parent) if k == self.root: break self.root.color = 0 # Printing the tree def __print_helper(self, node, indent, last): if node != self.TNULL: sys.stdout.write(indent) if last: sys.stdout.write("R----") indent += " " else: sys.stdout.write("L----") indent += "| " s_color = "RED" if node.color == 1 else "BLACK" print(str(node.item) + "(" + s_color + ")") self.__print_helper(node.left, indent, False) self.__print_helper(node.right, indent, True) def preorder(self): self.pre_order_helper(self.root) def inorder(self): self.in_order_helper(self.root) def postorder(self): self.post_order_helper(self.root) def searchTree(self, k): return self.search_tree_helper(self.root, k) def minimum(self, node): while node.left != self.TNULL: node = node.left return node def maximum(self, node): while node.right != self.TNULL: node = node.right return node def successor(self, x): if x.right != self.TNULL: return self.minimum(x.right) y = x.parent while y != self.TNULL and x == y.right: x = y y = y.parent return y def predecessor(self, x): if (x.left != self.TNULL): return self.maximum(x.left) y = x.parent while y != self.TNULL and x == y.left: x = y y = y.parent return y def left_rotate(self, x): y = x.right x.right = y.left if y.left != self.TNULL: y.left.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.left: x.parent.left = y else: x.parent.right = y y.left = x x.parent = y def right_rotate(self, x): y = x.left x.left = y.right if y.right != self.TNULL: y.right.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.right: x.parent.right = y else: x.parent.left = y y.right = x x.parent = y def insert(self, key): node = Node(key) node.parent = None node.item = key node.left = self.TNULL node.right = self.TNULL node.color = 1 y = None x = self.root while x != self.TNULL: y = x if node.item < x.item: x = x.left else: x = x.right node.parent = y if y == None: self.root = node elif node.item < y.item: y.left = node else: y.right = node if node.parent == None: node.color = 0 return if node.parent.parent == None: return self.fix_insert(node) def get_root(self): return self.root def delete_node(self, item): self.delete_node_helper(self.root, item) def print_tree(self): self.__print_helper(self.root, "", True) if __name__ == "__main__": bst = RedBlackTree() bst.insert(55) bst.insert(40) bst.insert(65) bst.insert(60) bst.insert(75) bst.insert(57) bst.print_tree() print("\nAfter deleting an element") bst.delete_node(40) bst.print_tree()
Java
// Implementing Red-Black Tree in Java class Node { int data; Node parent; Node left; Node right; int color; } public class RedBlackTree { private Node root; private Node TNULL; // Preorder private void preOrderHelper(Node node) { if (node != TNULL) { System.out.print(node.data + " "); preOrderHelper(node.left); preOrderHelper(node.right); } } // Inorder private void inOrderHelper(Node node) { if (node != TNULL) { inOrderHelper(node.left); System.out.print(node.data + " "); inOrderHelper(node.right); } } // Post order private void postOrderHelper(Node node) { if (node != TNULL) { postOrderHelper(node.left); postOrderHelper(node.right); System.out.print(node.data + " "); } } // Search the tree private Node searchTreeHelper(Node node, int key) { if (node == TNULL || key == node.data) { return node; } if (key < node.data) { return searchTreeHelper(node.left, key); } return searchTreeHelper(node.right, key); } // Balance the tree after deletion of a node private void fixDelete(Node x) { Node s; while (x != root && x.color == 0) { if (x == x.parent.left) { s = x.parent.right; if (s.color == 1) { s.color = 0; x.parent.color = 1; leftRotate(x.parent); s = x.parent.right; } if (s.left.color == 0 && s.right.color == 0) { s.color = 1; x = x.parent; } else { if (s.right.color == 0) { s.left.color = 0; s.color = 1; rightRotate(s); s = x.parent.right; } s.color = x.parent.color; x.parent.color = 0; s.right.color = 0; leftRotate(x.parent); x = root; } } else { s = x.parent.left; if (s.color == 1) { s.color = 0; x.parent.color = 1; rightRotate(x.parent); s = x.parent.left; } if (s.right.color == 0 && s.right.color == 0) { s.color = 1; x = x.parent; } else { if (s.left.color == 0) { s.right.color = 0; s.color = 1; leftRotate(s); s = x.parent.left; } s.color = x.parent.color; x.parent.color = 0; s.left.color = 0; rightRotate(x.parent); x = root; } } } x.color = 0; } private void rbTransplant(Node u, Node v) { if (u.parent == null) { root = v; } else if (u == u.parent.left) { u.parent.left = v; } else { u.parent.right = v; } v.parent = u.parent; } private void deleteNodeHelper(Node node, int key) { Node z = TNULL; Node x, y; while (node != TNULL) { if (node.data == key) { z = node; } if (node.data <= key) { node = node.right; } else { node = node.left; } } if (z == TNULL) { System.out.println("Couldn't find key in the tree"); return; } y = z; int yOriginalColor = y.color; if (z.left == TNULL) { x = z.right; rbTransplant(z, z.right); } else if (z.right == TNULL) { x = z.left; rbTransplant(z, z.left); } else { y = minimum(z.right); yOriginalColor = y.color; x = y.right; if (y.parent == z) { x.parent = y; } else { rbTransplant(y, y.right); y.right = z.right; y.right.parent = y; } rbTransplant(z, y); y.left = z.left; y.left.parent = y; y.color = z.color; } if (yOriginalColor == 0) { fixDelete(x); } } // Balance the node after insertion private void fixInsert(Node k) { Node u; while (k.parent.color == 1) { if (k.parent == k.parent.parent.right) { u = k.parent.parent.left; if (u.color == 1) { u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; } else { if (k == k.parent.left) { k = k.parent; rightRotate(k); } k.parent.color = 0; k.parent.parent.color = 1; leftRotate(k.parent.parent); } } else { u = k.parent.parent.right; if (u.color == 1) { u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; } else { if (k == k.parent.right) { k = k.parent; leftRotate(k); } k.parent.color = 0; k.parent.parent.color = 1; rightRotate(k.parent.parent); } } if (k == root) { break; } } root.color = 0; } private void printHelper(Node root, String indent, boolean last) { if (root != TNULL) { System.out.print(indent); if (last) { System.out.print("R----"); indent += " "; } else { System.out.print("L----"); indent += "| "; } String sColor = root.color == 1 ? "RED" : "BLACK"; System.out.println(root.data + "(" + sColor + ")"); printHelper(root.left, indent, false); printHelper(root.right, indent, true); } } public RedBlackTree() { TNULL = new Node(); TNULL.color = 0; TNULL.left = null; TNULL.right = null; root = TNULL; } public void preorder() { preOrderHelper(this.root); } public void inorder() { inOrderHelper(this.root); } public void postorder() { postOrderHelper(this.root); } public Node searchTree(int k) { return searchTreeHelper(this.root, k); } public Node minimum(Node node) { while (node.left != TNULL) { node = node.left; } return node; } public Node maximum(Node node) { while (node.right != TNULL) { node = node.right; } return node; } public Node successor(Node x) { if (x.right != TNULL) { return minimum(x.right); } Node y = x.parent; while (y != TNULL && x == y.right) { x = y; y = y.parent; } return y; } public Node predecessor(Node x) { if (x.left != TNULL) { return maximum(x.left); } Node y = x.parent; while (y != TNULL && x == y.left) { x = y; y = y.parent; } return y; } public void leftRotate(Node x) { Node y = x.right; x.right = y.left; if (y.left != TNULL) { y.left.parent = x; } y.parent = x.parent; if (x.parent == null) { this.root = y; } else if (x == x.parent.left) { x.parent.left = y; } else { x.parent.right = y; } y.left = x; x.parent = y; } public void rightRotate(Node x) { Node y = x.left; x.left = y.right; if (y.right != TNULL) { y.right.parent = x; } y.parent = x.parent; if (x.parent == null) { this.root = y; } else if (x == x.parent.right) { x.parent.right = y; } else { x.parent.left = y; } y.right = x; x.parent = y; } public void insert(int key) { Node node = new Node(); node.parent = null; node.data = key; node.left = TNULL; node.right = TNULL; node.color = 1; Node y = null; Node x = this.root; while (x != TNULL) { y = x; if (node.data < x.data) { x = x.left; } else { x = x.right; } } node.parent = y; if (y == null) { root = node; } else if (node.data < y.data) { y.left = node; } else { y.right = node; } if (node.parent == null) { node.color = 0; return; } if (node.parent.parent == null) { return; } fixInsert(node); } public Node getRoot() { return this.root; } public void deleteNode(int data) { deleteNodeHelper(this.root, data); } public void printTree() { printHelper(this.root, "", true); } public static void main(String[] args) { RedBlackTree bst = new RedBlackTree(); bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); System.out.println("\nAfter deleting:"); bst.deleteNode(40); bst.printTree(); } }
C
// Implementing Red-Black Tree in C #include <stdio.h> #include <stdlib.h> enum nodeColor { RED, BLACK }; struct rbNode { int data, color; struct rbNode *link[2]; }; struct rbNode *root = NULL; // Create a red-black tree struct rbNode *createNode(int data) { struct rbNode *newnode; newnode = (struct rbNode *)malloc(sizeof(struct rbNode)); newnode->data = data; newnode->color = RED; newnode->link[0] = newnode->link[1] = NULL; return newnode; } // Insert an node void insertion(int data) { struct rbNode *stack[98], *ptr, *newnode, *xPtr, *yPtr; int dir[98], ht = 0, index; ptr = root; if (!root) { root = createNode(data); return; } stack[ht] = root; dir[ht++] = 0; while (ptr != NULL) { if (ptr->data == data) { printf("Duplicates Not Allowed!!\n"); return; } index = (data - ptr->data) > 0 ? 1 : 0; stack[ht] = ptr; ptr = ptr->link[index]; dir[ht++] = index; } stack[ht - 1]->link[index] = newnode = createNode(data); while ((ht >= 3) && (stack[ht - 1]->color == RED)) { if (dir[ht - 2] == 0) { yPtr = stack[ht - 2]->link[1]; if (yPtr != NULL && yPtr->color == RED) { stack[ht - 2]->color = RED; stack[ht - 1]->color = yPtr->color = BLACK; ht = ht - 2; } else { if (dir[ht - 1] == 0) { yPtr = stack[ht - 1]; } else { xPtr = stack[ht - 1]; yPtr = xPtr->link[1]; xPtr->link[1] = yPtr->link[0]; yPtr->link[0] = xPtr; stack[ht - 2]->link[0] = yPtr; } xPtr = stack[ht - 2]; xPtr->color = RED; yPtr->color = BLACK; xPtr->link[0] = yPtr->link[1]; yPtr->link[1] = xPtr; if (xPtr == root) { root = yPtr; } else { stack[ht - 3]->link[dir[ht - 3]] = yPtr; } break; } } else { yPtr = stack[ht - 2]->link[0]; if ((yPtr != NULL) && (yPtr->color == RED)) { stack[ht - 2]->color = RED; stack[ht - 1]->color = yPtr->color = BLACK; ht = ht - 2; } else { if (dir[ht - 1] == 1) { yPtr = stack[ht - 1]; } else { xPtr = stack[ht - 1]; yPtr = xPtr->link[0]; xPtr->link[0] = yPtr->link[1]; yPtr->link[1] = xPtr; stack[ht - 2]->link[1] = yPtr; } xPtr = stack[ht - 2]; yPtr->color = BLACK; xPtr->color = RED; xPtr->link[1] = yPtr->link[0]; yPtr->link[0] = xPtr; if (xPtr == root) { root = yPtr; } else { stack[ht - 3]->link[dir[ht - 3]] = yPtr; } break; } } } root->color = BLACK; } // Delete a node void deletion(int data) { struct rbNode *stack[98], *ptr, *xPtr, *yPtr; struct rbNode *pPtr, *qPtr, *rPtr; int dir[98], ht = 0, diff, i; enum nodeColor color; if (!root) { printf("Tree not available\n"); return; } ptr = root; while (ptr != NULL) { if ((data - ptr->data) == 0) break; diff = (data - ptr->data) > 0 ? 1 : 0; stack[ht] = ptr; dir[ht++] = diff; ptr = ptr->link[diff]; } if (ptr->link[1] == NULL) { if ((ptr == root) && (ptr->link[0] == NULL)) { free(ptr); root = NULL; } else if (ptr == root) { root = ptr->link[0]; free(ptr); } else { stack[ht - 1]->link[dir[ht - 1]] = ptr->link[0]; } } else { xPtr = ptr->link[1]; if (xPtr->link[0] == NULL) { xPtr->link[0] = ptr->link[0]; color = xPtr->color; xPtr->color = ptr->color; ptr->color = color; if (ptr == root) { root = xPtr; } else { stack[ht - 1]->link[dir[ht - 1]] = xPtr; } dir[ht] = 1; stack[ht++] = xPtr; } else { i = ht++; while (1) { dir[ht] = 0; stack[ht++] = xPtr; yPtr = xPtr->link[0]; if (!yPtr->link[0]) break; xPtr = yPtr; } dir[i] = 1; stack[i] = yPtr; if (i > 0) stack[i - 1]->link[dir[i - 1]] = yPtr; yPtr->link[0] = ptr->link[0]; xPtr->link[0] = yPtr->link[1]; yPtr->link[1] = ptr->link[1]; if (ptr == root) { root = yPtr; } color = yPtr->color; yPtr->color = ptr->color; ptr->color = color; } } if (ht < 1) return; if (ptr->color == BLACK) { while (1) { pPtr = stack[ht - 1]->link[dir[ht - 1]]; if (pPtr && pPtr->color == RED) { pPtr->color = BLACK; break; } if (ht < 2) break; if (dir[ht - 2] == 0) { rPtr = stack[ht - 1]->link[1]; if (!rPtr) break; if (rPtr->color == RED) { stack[ht - 1]->color = RED; rPtr->color = BLACK; stack[ht - 1]->link[1] = rPtr->link[0]; rPtr->link[0] = stack[ht - 1]; if (stack[ht - 1] == root) { root = rPtr; } else { stack[ht - 2]->link[dir[ht - 2]] = rPtr; } dir[ht] = 0; stack[ht] = stack[ht - 1]; stack[ht - 1] = rPtr; ht++; rPtr = stack[ht - 1]->link[1]; } if ((!rPtr->link[0] || rPtr->link[0]->color == BLACK) && (!rPtr->link[1] || rPtr->link[1]->color == BLACK)) { rPtr->color = RED; } else { if (!rPtr->link[1] || rPtr->link[1]->color == BLACK) { qPtr = rPtr->link[0]; rPtr->color = RED; qPtr->color = BLACK; rPtr->link[0] = qPtr->link[1]; qPtr->link[1] = rPtr; rPtr = stack[ht - 1]->link[1] = qPtr; } rPtr->color = stack[ht - 1]->color; stack[ht - 1]->color = BLACK; rPtr->link[1]->color = BLACK; stack[ht - 1]->link[1] = rPtr->link[0]; rPtr->link[0] = stack[ht - 1]; if (stack[ht - 1] == root) { root = rPtr; } else { stack[ht - 2]->link[dir[ht - 2]] = rPtr; } break; } } else { rPtr = stack[ht - 1]->link[0]; if (!rPtr) break; if (rPtr->color == RED) { stack[ht - 1]->color = RED; rPtr->color = BLACK; stack[ht - 1]->link[0] = rPtr->link[1]; rPtr->link[1] = stack[ht - 1]; if (stack[ht - 1] == root) { root = rPtr; } else { stack[ht - 2]->link[dir[ht - 2]] = rPtr; } dir[ht] = 1; stack[ht] = stack[ht - 1]; stack[ht - 1] = rPtr; ht++; rPtr = stack[ht - 1]->link[0]; } if ((!rPtr->link[0] || rPtr->link[0]->color == BLACK) && (!rPtr->link[1] || rPtr->link[1]->color == BLACK)) { rPtr->color = RED; } else { if (!rPtr->link[0] || rPtr->link[0]->color == BLACK) { qPtr = rPtr->link[1]; rPtr->color = RED; qPtr->color = BLACK; rPtr->link[1] = qPtr->link[0]; qPtr->link[0] = rPtr; rPtr = stack[ht - 1]->link[0] = qPtr; } rPtr->color = stack[ht - 1]->color; stack[ht - 1]->color = BLACK; rPtr->link[0]->color = BLACK; stack[ht - 1]->link[0] = rPtr->link[1]; rPtr->link[1] = stack[ht - 1]; if (stack[ht - 1] == root) { root = rPtr; } else { stack[ht - 2]->link[dir[ht - 2]] = rPtr; } break; } } ht--; } } } // Print the inorder traversal of the tree void inorderTraversal(struct rbNode *node) { if (node) { inorderTraversal(node->link[0]); printf("%d ", node->data); inorderTraversal(node->link[1]); } return; } // Driver code int main() { int ch, data; while (1) { printf("1. Insertion\t2. Deletion\n"); printf("3. Traverse\t4. Exit"); printf("\nEnter your choice:"); scanf("%d", &ch); switch (ch) { case 1: printf("Enter the element to insert:"); scanf("%d", &data); insertion(data); break; case 2: printf("Enter the element to delete:"); scanf("%d", &data); deletion(data); break; case 3: inorderTraversal(root); printf("\n"); break; case 4: exit(0); default: printf("Not available\n"); break; } printf("\n"); } return 0; }
C++
// Implementing Red-Black Tree in C++ #include <iostream> using namespace std; struct Node { int data; Node *parent; Node *left; Node *right; int color; }; typedef Node *NodePtr; class RedBlackTree { private: NodePtr root; NodePtr TNULL; void initializeNULLNode(NodePtr node, NodePtr parent) { node->data = 0; node->parent = parent; node->left = nullptr; node->right = nullptr; node->color = 0; } // Preorder void preOrderHelper(NodePtr node) { if (node != TNULL) { cout << node->data << " "; preOrderHelper(node->left); preOrderHelper(node->right); } } // Inorder void inOrderHelper(NodePtr node) { if (node != TNULL) { inOrderHelper(node->left); cout << node->data << " "; inOrderHelper(node->right); } } // Post order void postOrderHelper(NodePtr node) { if (node != TNULL) { postOrderHelper(node->left); postOrderHelper(node->right); cout << node->data << " "; } } NodePtr searchTreeHelper(NodePtr node, int key) { if (node == TNULL || key == node->data) { return node; } if (key < node->data) { return searchTreeHelper(node->left, key); } return searchTreeHelper(node->right, key); } // For balancing the tree after deletion void deleteFix(NodePtr x) { NodePtr s; while (x != root && x->color == 0) { if (x == x->parent->left) { s = x->parent->right; if (s->color == 1) { s->color = 0; x->parent->color = 1; leftRotate(x->parent); s = x->parent->right; } if (s->left->color == 0 && s->right->color == 0) { s->color = 1; x = x->parent; } else { if (s->right->color == 0) { s->left->color = 0; s->color = 1; rightRotate(s); s = x->parent->right; } s->color = x->parent->color; x->parent->color = 0; s->right->color = 0; leftRotate(x->parent); x = root; } } else { s = x->parent->left; if (s->color == 1) { s->color = 0; x->parent->color = 1; rightRotate(x->parent); s = x->parent->left; } if (s->right->color == 0 && s->right->color == 0) { s->color = 1; x = x->parent; } else { if (s->left->color == 0) { s->right->color = 0; s->color = 1; leftRotate(s); s = x->parent->left; } s->color = x->parent->color; x->parent->color = 0; s->left->color = 0; rightRotate(x->parent); x = root; } } } x->color = 0; } void rbTransplant(NodePtr u, NodePtr v) { if (u->parent == nullptr) { root = v; } else if (u == u->parent->left) { u->parent->left = v; } else { u->parent->right = v; } v->parent = u->parent; } void deleteNodeHelper(NodePtr node, int key) { NodePtr z = TNULL; NodePtr x, y; while (node != TNULL) { if (node->data == key) { z = node; } if (node->data <= key) { node = node->right; } else { node = node->left; } } if (z == TNULL) { cout << "Key not found in the tree" << endl; return; } y = z; int y_original_color = y->color; if (z->left == TNULL) { x = z->right; rbTransplant(z, z->right); } else if (z->right == TNULL) { x = z->left; rbTransplant(z, z->left); } else { y = minimum(z->right); y_original_color = y->color; x = y->right; if (y->parent == z) { x->parent = y; } else { rbTransplant(y, y->right); y->right = z->right; y->right->parent = y; } rbTransplant(z, y); y->left = z->left; y->left->parent = y; y->color = z->color; } delete z; if (y_original_color == 0) { deleteFix(x); } } // For balancing the tree after insertion void insertFix(NodePtr k) { NodePtr u; while (k->parent->color == 1) { if (k->parent == k->parent->parent->right) { u = k->parent->parent->left; if (u->color == 1) { u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; } else { if (k == k->parent->left) { k = k->parent; rightRotate(k); } k->parent->color = 0; k->parent->parent->color = 1; leftRotate(k->parent->parent); } } else { u = k->parent->parent->right; if (u->color == 1) { u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; } else { if (k == k->parent->right) { k = k->parent; leftRotate(k); } k->parent->color = 0; k->parent->parent->color = 1; rightRotate(k->parent->parent); } } if (k == root) { break; } } root->color = 0; } void printHelper(NodePtr root, string indent, bool last) { if (root != TNULL) { cout << indent; if (last) { cout << "R----"; indent += " "; } else { cout << "L----"; indent += "| "; } string sColor = root->color ? "RED" : "BLACK"; cout << root->data << "(" << sColor << ")" << endl; printHelper(root->left, indent, false); printHelper(root->right, indent, true); } } public: RedBlackTree() { TNULL = new Node; TNULL->color = 0; TNULL->left = nullptr; TNULL->right = nullptr; root = TNULL; } void preorder() { preOrderHelper(this->root); } void inorder() { inOrderHelper(this->root); } void postorder() { postOrderHelper(this->root); } NodePtr searchTree(int k) { return searchTreeHelper(this->root, k); } NodePtr minimum(NodePtr node) { while (node->left != TNULL) { node = node->left; } return node; } NodePtr maximum(NodePtr node) { while (node->right != TNULL) { node = node->right; } return node; } NodePtr successor(NodePtr x) { if (x->right != TNULL) { return minimum(x->right); } NodePtr y = x->parent; while (y != TNULL && x == y->right) { x = y; y = y->parent; } return y; } NodePtr predecessor(NodePtr x) { if (x->left != TNULL) { return maximum(x->left); } NodePtr y = x->parent; while (y != TNULL && x == y->left) { x = y; y = y->parent; } return y; } void leftRotate(NodePtr x) { NodePtr y = x->right; x->right = y->left; if (y->left != TNULL) { y->left->parent = x; } y->parent = x->parent; if (x->parent == nullptr) { this->root = y; } else if (x == x->parent->left) { x->parent->left = y; } else { x->parent->right = y; } y->left = x; x->parent = y; } void rightRotate(NodePtr x) { NodePtr y = x->left; x->left = y->right; if (y->right != TNULL) { y->right->parent = x; } y->parent = x->parent; if (x->parent == nullptr) { this->root = y; } else if (x == x->parent->right) { x->parent->right = y; } else { x->parent->left = y; } y->right = x; x->parent = y; } // Inserting a node void insert(int key) { NodePtr node = new Node; node->parent = nullptr; node->data = key; node->left = TNULL; node->right = TNULL; node->color = 1; NodePtr y = nullptr; NodePtr x = this->root; while (x != TNULL) { y = x; if (node->data < x->data) { x = x->left; } else { x = x->right; } } node->parent = y; if (y == nullptr) { root = node; } else if (node->data < y->data) { y->left = node; } else { y->right = node; } if (node->parent == nullptr) { node->color = 0; return; } if (node->parent->parent == nullptr) { return; } insertFix(node); } NodePtr getRoot() { return this->root; } void deleteNode(int data) { deleteNodeHelper(this->root, data); } void printTree() { if (root) { printHelper(this->root, "", true); } } }; int main() { RedBlackTree bst; bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); cout << endl << "After deleting" << endl; bst.deleteNode(40); bst.printTree(); }
Thanks for reading! We hope you found this tutorial helpful and we would love to hear your feedback in the Comments section below. And show us what you’ve learned by sharing your photos and creative projects with us.